Water-dissolvable and Reactive KCdCl₃ Nanowires: Precursor and Template for Preparation of CdS and CdSe Nanotubes

Hua Tong, Ying-Jie Zhu,* and Xiao-Lin Liu
State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics,
Chinese Academy of Sciences, Shanghai 200050, P. R. China

(Received December 4, 2008; CL-081133; E-mail: v.j.zhu@mail.sic.ac.cn)

CdS and CdSe polycrystalline nanotubes self-assembled from nanocrystals have been successfully prepared using water-dissolvable and reactive KCdCl₃ nanowires as precursor and template at room temperature.

Since the discovery of carbon nanotubes in 1991, one-dimensional (1-D) nanostructures such as nanorods, nanowires, and nanotubes, have been the focus of intensive research owing to their unique physical and chemical properties and promising applications. Many strategies have been developed for the preparation of 1-D nanostructures over the past years. Comparatively, the formation of nanotubes is more complex and few effective strategies have been developed. Nanotubes of some materials with a layered structure can be directly prepared under the appropriate conditions. However, nanotubes of other materials without a layered structure were produced by an indirect strategy, ¹ in which 1-D templates involving the channels in porous materials, ²⁻⁷ 1-D micelles, ⁸⁻¹¹ organic and inorganic nanowires, ¹²⁻¹⁷ etc. were usually used.

In a general preparation process of nanotubes, 1-D nanostructures serve as templates within which different materials are generated in situ by various physical and chemical methods and shaped into duplicated 1-D nanostructures. The 1-D template-based strategy represents an effective, controllable, and reproducible route to the fabrication of nanotubes of many kinds of materials. However, three aspects of problems need to be resolved in many template-based methods: high cost and low output of templates, limited applicability of a specific template, and inconvenience of removing the templates. Water-dissolvable and reactive inorganic nanowires are promising 1-D templates for the fabrication of nanotubes. Very recently, Na₂SO₄ nanowires were developed and used as 1-D template to produce polyelectrolyte and Au nanotubes. 15 However, Na₂SO₄ nanowires were not reactive in the fabrication of polyelectrolyte and Au nanotubes.

Herein, we report the room-temperature fabrication of a new type of water-dissolvable and reactive inorganic nanowire of KCdCl₃, and CdS and CdSe polycrystalline nanotubes are prepared using KCdCl₃ nanowires as both the precursor and template. One of the advantages of this method is that the preparation of both KCdCl₃ nanowires and CdS and CdSe polycrystalline nanotubes self-assembled from nanocrystals can be conducted at room temperature and in air, thus simplicity and low cost can be achieved.

In a typical fabrication procedure for KCdCl₃ nanowires, a source solution containing CdCl₂•2.5H₂O (0.456 g), KI (0.042 g), and deionized water (3 mL) was added into anhydrous ethanol (30 mL) under magnetic stirring at room temperature. A white product (KCdCl₃ nanowires) formed immediately, and

the solution was stirred for 20 min. The product was collected by centrifugation and washed with anhydrous ethanol. Then, the KCdCl₃ nanowires were dispersed in anhydrous ethanol (20 mL) to act as the precursor and template, which subsequently reacted with chalcogenide ions (S²⁻ and Se²⁻) to produce CdS and CdSe nanotubes. The sulfur source solution was prepared by dissolving Na₂S·9H₂O (0.096 g) into anhydrous ethanol (5 mL); the selenium source solution was prepared by adding Se powder (0.031 g) and NaBH₄ (0.060 g) into anhydrous ethanol (5 mL); In a typical fabrication procedure of CdS and CdSe nanotubes, the reaction started and was allowed to proceed for 30 min by adding the sulfur source solution or selenium source solution into the KCdCl₃-nanowire template solution under magnetic stirring. The product was collected by centrifugation and washed with deionized water to remove KCdCl₃-nanowire template.

X-ray powder diffraction (XRD, Rigaku D/MAX 2550V, Cu Kα) shows that KCdCl₃ nanowires are well crystallized with an orthorhombic crystal structure (Figure 1, JCPDS No. 18-0995). Figure 2a shows the transmission electron microscopy (TEM, JEM-2100F) of KCdCl₃ nanowires. The KCdCl₃ nanowires have typical diameters of 200–300 nm and lengths of 10–50 μm. Figure 2b shows TEM micrograph of a single nanowire, whose corresponding electron diffraction pattern (Figure 2c) indicates that KCdCl₃ nanowires are single crystalline in structure.

CdS and CdSe nanotubes were obtained using $KCdCl_3$ nanowires as both the precursor (cadmium source) and template at room temperature. By introducing S^{2-} or Se^{2-} ions to the ethanol solution containing $KCdCl_3$ nanowires, CdS or CdSe formed a shell on the surface of $KCdCl_3$ nanowires as a result of the reaction between $KCdCl_3$ and S^{2-} or Se^{2-} ions and a lower solubility of CdS or CdSe than that of $KCdCl_3$ in solution. The remaining $KCdCl_3$ -nanowire template was easily removed by washing with water since $KCdCl_3$ was water-dissolvable. Finally, CdS or CdSe nanotubes were obtained at room temperature by using this simple preparation route.

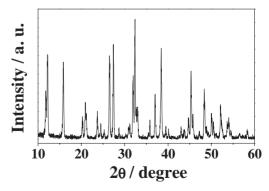
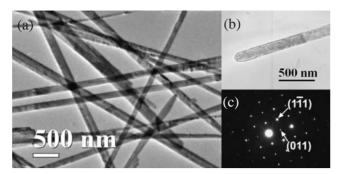



Figure 1. XRD pattern of KCdCl₃ nanowires.

Figure 2. (a) TEM micrograph of KCdCl₃ nanowires, (b) TEM micrograph of a single nanowire, and (c) electron diffraction pattern of a single nanowire.

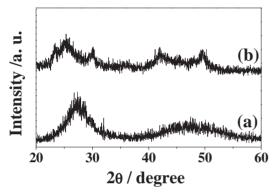
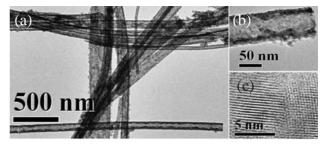
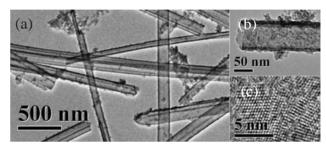



Figure 3. XRD patterns of nanotubes: (a) CdS and (b) CdSe.


XRD patterns of as-obtained samples confirm the formation of crystalline CdS (JCPDS No. 80-0006, Figure 3a) and CdSe (JCPDS No. 88-2346, Figure 3b). No diffraction peaks from the precursor template nanowires are observed. The broadening of the diffraction peaks implies that CdS or CdSe nanotubes consist of very small nanocrystals. Energy dispersive spectroscopy (EDS) results confirm that CdS or CdSe sample consists of cadmium and sulfur (or selenium) with a molar ratio of Cd to S (or Se) of about 1:1, verifying that the formation of CdS or CdSe.

TEM charcaterization shows that the samples of CdS (Figure 4) and CdSe (Figure 5) consist of polycrystalline nanotubes. The sizes of CdS and CdSe nanotubes both in diameter and in length are similar to those of KCdCl₃ nanowires. From TEM micrographs, one can see that the ends of CdS and CdSe nanotubes (Figures 4b and 5b) are open. The high-resolution TEM (HRTEM) images (Figures 4c and 5c) reveal that CdS and CdSe nanotubes are formed by the self-assembly of nanocrystals smaller than 10 nm.

In summary, CdS and CdSe polycrystalline nanotubes self-assembled from nanocrystals have been successfully prepared using KCdCl $_3$ nanowire as precursor and template at room temperature. The KCdCl $_3$ nanowires are prepared by adding an aqueous solution containing CdCl $_2$ and KI into anhydrous ethanol at room temperature. The KCdCl $_3$ -nanowire template is water-dissolvable and reactive to S 2 - or Se 2 - ions, it acts as both the precursor (cadmium source) and template and is easily removed by washing with water. One of the advantages of this method is that the preparation of both KCdCl $_3$ nanowires and CdS or CdSe polycrystalline nanotubes can be conducted at

Figure 4. (a) TEM micrograph of CdS nanotubes, (b) TEM micrograph of a single nanotube with an open end, and (c) HRTEM image.

Figure 5. (a) TEM micrograph of CdSe nanotubes, (b) TEM micrograph of a single nanotube with an open end, and (c) HRTEM image.

room temperature and in air, thus simplicity and low cost can be achieved.

Financial support from the National Natural Science Foundation of China (No. 50772124, the Fund for Innovative Research Groups (No. 50821004)), CAS International Partnership Program for Innovative Research Team, the Program of Shanghai Subject Chief Scientist (No. 07XD14031), the Fund for Nano- Science and Technology from Science and Technology Commission of Shanghai Municipality (No. 0852nm05800), and the Fund of State Key Laboratory of High Performance Ceramics and Superfine Microstructure is gratefully acknowledged.

References

- Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, Y. Yan, Adv. Mater. 2003, 15, 353.
- W. Wang, S.-Y. Wang, Y.-L. Gao, K.-Y. Wang, M. Liu, Mater. Sci. Eng., B 2006, 133, 167.
- S. Y. Jeong, J. Y. Kim, H. D. Yang, B. N. Yoon, S. H. Choi, H. K. Kang, C. W. Yang, Y. H. Lee, Adv. Mater. 2003, 15, 1172.
- 4 H. Tan, E. Ye, W. Y. Fan, Adv. Mater. 2006, 18, 619.
- 5 M. Zhang, Y. Bando, K. Wada, J. Mater. Res. 2000, 15, 387.
- 6 N. Kouklin, Appl. Phys. Lett. 2005, 87, 203105.
- H. Imai, Y. Takei, K. Shimizu, M. Matsuda, H. Hirashima, *J. Mater. Chem.* 1999, 9, 2971.
- 8 J. R. Ota, S. K. Srivastava, Nanotechnology 2005, 16, 2415.
- Y. Xiong, Y. Xie, J. Yang, R. Zhang, C. Wu, G. Du, J. Mater. Chem. 2002, 12, 3712.
- 10 Y. Ma, L. Qi, J. Ma, H. Cheng, Adv. Mater. 2004, 16, 1023.
- 11 R. Lv, C. Cao, Y. Guo, H. Zhu, J. Mater. Sci. 2004, 39, 1575.
- 12 X. Li, H. Chu, Y. Li, J. Solid State Chem. 2006, 179, 96.
- 13 M. Y. Lu, Y. C. Chang, L. J. Chen, J. Vac. Sci. Technol., A 2006, 24, 1336.
- 14 H. Niu, M. Gao, Angew. Chem., Int. Ed. 2006, 45, 6462.
- 15 Y.-C. Pu, J. R. Hwu, W.-C. Su, D.-B. Shieh, Y. Tzeng, C.-S. Yeh, J. Am. Chem. Soc. 2006, 128, 11606.
- H. Ogihara, M. Sadakane, Y. Nodasaka, W. Ueda, *Chem. Mater.* 2006, 18, 4981.
- 17 H. Tong, Y.-J. Zhu, L.-X. Yang, L. Li, L. Zhang, Angew. Chem., Int. Ed. 2006, 45, 7739.